How can a Blended Learning model be applied to facilitate personalization of numeracy instruction for primary students?

by

Carla M. Takach

Submitted in partial fulfillment of the requirements for the degree of

MASTER OF EDUCATION IN EDUCATIONAL LEADERSHIP

VANCOUVER ISLAND UNIVERSITY

We accept the Process Paper as conforming to the required standard.

Mary O’Neill, Major Project Faculty Supervisor
Faculty of Education,
Vancouver Island University

Date: 10 Dec. 2018

Dr. David Paterson Dean,
Faculty of Education,
Vancouver Island University

Date: 10 Dec. 2018

Copyright 2018
Abstract

Although the new BC curriculum addresses the need for personalization of instruction in Mathematics there are not many guidelines or resources available to support using a Blended Learning approach for personalization in the primary classroom. There is little substantial research around using Blended Learning as a way to personalize, and thus improve, Mathematical achievement in the primary grades as the majority of the research is conducted at the secondary and post-secondary levels.

This Blended Learning Numeracy project is designed to move primary Math classrooms from a traditional learning delivery model—where all students are taught the same knowledge at the same time— to a more personalized model where all students are provided time to master skills and move forward at their own pace once conceptual understanding of a concept is acquired. Teachers are able to provide small group instruction based on individual student’s learning needs and students are able to have input into their learning. Blended Learning also develops the lifelong skills needed for our students to be successful in the 21st Century.

The Critical Challenge Question, ‘How can a Blended Learning model be applied to facilitate personalization of Numeracy instruction for primary students?’ is informed by this research and has been applied to the creation of the Primary BlendED website. The website is intended to be a resource for teachers who want to implement a Blended Learning model in their primary Mathematics classroom. The website provides suggestions for apps to support personalization as well as resources on classroom setup, digital citizenship and student privacy. The Major Project website can be found here: https://primaryblended.weebly.com/

Keywords: Blended Learning, Personalized Learning, 21st Century Learning, Primary Education, Traditional Learning, numeracy instruction.
Acknowledgements

I would like to first thank my colleagues Danica Farrell and Gina Farrell who first approached me with the idea of pursuing an online teaching graduate diploma. From the beginning, both Danica and Gina have been there as sounding boards and support in making this journey a very rewarding one. It only seemed fitting to complete a Masters project together based on a proposal that we presented to our school district on Blended Learning.

I would also like to thank the teachers in the Online Learning and Teaching Diploma (OLTD) program for sharing their wisdom and providing assistance in making the courses more applicable to primary education. I would like to especially thank Mary O’Neill and Avi Luxenburg, my faculty Supervisors, who were always there to answer my endless questions and give me guidance. The seed for educational change was planted in OLTD 501 as I completed an annotated bibliography on the topic of Blended Learning. I was able to imagine students being engaged and all moving forward in their learning using this type of teaching model.

Finally, I would like to thank my family, whose support made it possible for me to complete this Masters project. My husband, Phil, often completed more than his fair share of the household tasks so I could have time to work on assignments and complete my Masters research. My daughter, Tamara, would often read and edit my papers prior to submission, reminding me of all the commas I missed. My son, Jonathan, understood and never complained that I had less time to attend all his hockey games. Without all of their patience and support this endeavor would have been impossible.
TABLE OF CONTENTS

Abstract ... ii

Acknowledgements ... iii

List of Tables .. vi

List of Figures ... vii

Chapter 1-Introduction .. 1

 Purpose of the Major Project ... 1
 Justification of the Major Project ... 3
 Technology in support of 21st century learners. ... 3
 The Blended Learning model ... 3
 Critical Challenge Question ... 4
 Key Deliverables .. 5
 Brief Overview of the Project ... 5
 Major Project Timeline .. 7
 Definition of Terms .. 7

Chapter 2- Literature Review- Primary BlendED Numeracy .. 11

 Introduction .. 11
 What is Blended Learning and Which Model Works Best for Primary Students? 12
 Challenges to Implementing a Station Rotation Model in a Primary Classroom 13
 What Considerations are Essential to Personalizing Numeracy in a Face-to-Face Blended Classroom? .. 14
 Pedagogy to support primary Mathematics instruction ... 14
 Personalized learning ... 15
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mastery learning</td>
<td>16</td>
</tr>
<tr>
<td>What Devices Can be Used for Implementing Blended Learning</td>
<td>17</td>
</tr>
<tr>
<td>What Apps and Websites are Best Suited for Primary Students?</td>
<td>18</td>
</tr>
<tr>
<td>Design principals</td>
<td>18</td>
</tr>
<tr>
<td>Evaluating apps and websites</td>
<td>19</td>
</tr>
<tr>
<td>Choosing Mathematic apps for primary instruction</td>
<td>19</td>
</tr>
<tr>
<td>Correlations Between Blended Learning Rotation Models and Achievement</td>
<td>20</td>
</tr>
<tr>
<td>Conclusions</td>
<td>21</td>
</tr>
<tr>
<td>Literature Review - Primary BlendED - Reading</td>
<td>23</td>
</tr>
<tr>
<td>Introduction</td>
<td>23</td>
</tr>
<tr>
<td>Defining Blended Learning</td>
<td>24</td>
</tr>
<tr>
<td>Rotation model</td>
<td>24</td>
</tr>
<tr>
<td>Flex model</td>
<td>25</td>
</tr>
<tr>
<td>A La Carte model</td>
<td>25</td>
</tr>
<tr>
<td>Enriched Virtual model</td>
<td>25</td>
</tr>
<tr>
<td>Why Blended Learning?</td>
<td>25</td>
</tr>
<tr>
<td>Considerations to Blending the Primary Classroom</td>
<td>27</td>
</tr>
<tr>
<td>Devices and screen time</td>
<td>27</td>
</tr>
<tr>
<td>Station Rotation Blended Learning model</td>
<td>28</td>
</tr>
<tr>
<td>The Pedagogical Benefits and Challenges to a Station Rotation Blended Learning Model</td>
<td>29</td>
</tr>
<tr>
<td>The benefits</td>
<td>29</td>
</tr>
<tr>
<td>The challenges</td>
<td>29</td>
</tr>
</tbody>
</table>
Personalizing Reading Instruction for Primary Students ... 30
Barriers to Implementing a Blended Learning Program... 31
Conclusions.. 32

Conclusions.. 32

Literature Review – Primary BlendED - Writing.. 34

Introduction .. 34
The Change Towards Blended Learning .. 34
Elements of Blended Learning.. 35
The Rotation Model ... 36
Station Rotation model ... 37

Digital Citizenship and Internet Safety in Primary Classrooms................................. 37
Personal Writing, Story Writing and Mobile Devices in Writing 38
Access for Students with Special Needs – Assistive Technology............................. 39
Technology as a Way to Extend Learning for Writers... 41
Assessment for and of Learning.. 42
Conclusions.. 43

Chapter 3- Procedures and Methods... 45
Development of Proposal Idea... 45
Development of Major Project... 46
Website Design Timeline ... 47
Key Deliverable: Primarily BlendED Resource Website.. 47

Classroom models – Rotation approach... 48
Vetted apps and websites.. 48
Assessment.. 50
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Project Overview</td>
<td>64</td>
</tr>
<tr>
<td>Conclusions as Applied to the Project Re-Design</td>
<td>64</td>
</tr>
<tr>
<td>Outcome Evaluation</td>
<td>66</td>
</tr>
<tr>
<td>Results of Findings in Relation to the Literature Review</td>
<td>66</td>
</tr>
<tr>
<td>Model considerations</td>
<td>67</td>
</tr>
<tr>
<td>Device and app considerations</td>
<td>67</td>
</tr>
<tr>
<td>Limitations of the Project</td>
<td>69</td>
</tr>
<tr>
<td>Major Project Recommendations</td>
<td>69</td>
</tr>
<tr>
<td>Major Project Deliverables</td>
<td>70</td>
</tr>
<tr>
<td>Next Steps</td>
<td>70</td>
</tr>
<tr>
<td>Final Conclusions</td>
<td>71</td>
</tr>
<tr>
<td>References – Primary BlendED - Numeracy</td>
<td>73</td>
</tr>
<tr>
<td>References – Primary BlendED – Reading</td>
<td>75</td>
</tr>
<tr>
<td>References – Primary BlendED – Writing</td>
<td>77</td>
</tr>
<tr>
<td>Appendix A: Major Project Website: Primary BlendED</td>
<td>82</td>
</tr>
</tbody>
</table>
List of Tables

Table 1. Major Project Timeline...7

Table 2. Definition of Terms..7

Table 3. Website Design Timeline...47
List of Figures

Figure 1 Screenshot of the first page of the Survey on a Google Form sent out to colleagues………………………………………………………………………………………………….54

Figure 2 Screen shot of the image with some Google Form questions presented on our survey………………………………………………………………………………………………56

Figure 3 A screen shot of the summary of key findings chart from the Google Form survey……………………………………………………………………………………………………62
Chapter 1 – Introduction

Purpose of the Major Project

Meeting the diverse needs of our students in our traditional face-to-face classrooms has always been a challenge. However, in recent years this challenge has become even greater with the lack of adult-to-student class size ratio. This is partly due to changing demographics, as years ago we often had parent volunteers in schools who would often help in class. These parents would act similarly to an EA in the sense that they would help monitor students working on assignments or practicing skills in game-like situations, while the teacher pulled small groups aside to work with on specific skill development. Not only were there more adult hands to facilitate groups, but the needs of our clientele were also different back then. A typical class often had a bell curve in which the majority of students were working at the same level and teachers often taught to the middle, making adjustments for the few at each end of the spectrum.

Today however, our students’ learning is more of a U-curve, where few are in the middle and we have greater percentage of kids at opposing ends of a learning concept. More students are now being left behind or are losing interest in school due to boredom and lack of engagement. Without the extra adult help in the classroom, young students often have difficulty staying focused on tasks during independent worktime while the teacher is occupied, working with smaller groups. This can be attributed to numerous reasons. One is that students may not be getting feedback as they are progressing with their work. They are stuck and need a review of a concept, method or assignment if it isn’t very motivating or socially engaging. Horn and Staker (2015), state that there are two tasks that students come to school for. First, they want to feel successful, knowing that they are making progress in their learning. Secondly, that they are having fun with their friends. By using technology to allow students to progress at their own
pace, students are empowered to feel successful as they have regular feedback on how they are progressing. This leads to a need to personalize instruction for all students in order to maximize each person’s learning potential. Blended Learning is a way to help personalize learning for all students as it allows students to learn partly online with some control over personal pace, path and place.

Blended Learning is an educational program that combines online learning using digital tools with traditional classroom methods in a school setting away from the student’s home. There are four main types of Blended Learning Rotation models used in classrooms; Station Rotation where students rotate between the stations in a classroom, one of which facilitates online learning; Lab Rotation, where the students rotate between the classroom and the computer lab for the online portion, Flipped Classroom where the students learn the online portion independently on their own time at home or at school, and Individual Rotation where students rotate to the different modalities based on their needs at the time. The application of a Blended Learning model should be multifaceted. It needs to combine internet-based learning with a suitable portion of face-to-face instruction, hands on learning tools and activities for students to work at independently and cooperatively. One benefit is that it allows students to progress at their own level and achieve skill mastery before moving on. They have some control over time and pace. Another benefit is that it creates greater student engagement and allows for regular feedback through technology-supported apps. Students also develop lifelong learning skills. Using a Blended Learning delivery model also provides teachers with skill-based assessment through apps that allow them more time to work with individual students and teach specific skills as they are needed, versus spending time on summative assessment. The often-neglected advanced
students have the opportunity to be working on material at their level so they can continue to progress and not lose interest.

Justification of the Major Project

Technology in support of 21st century learners. According to Collins and Halverson (2018) in their book Rethinking Education in the Age of Technology, we have moved from the Industrial Revolution where education was uniformed, dictated and teacher controlled to the Knowledge or Information Revolution where education is customized, interactive and more student controlled. Using technology allows students to “participate in games and activities that provide immediate feedback on their performance.” (p. 4.) They go on to state that schools need to change their teaching practices as they often keep digital technologies on the periphery of their core academics by only providing technology prep courses and computer labs, even though these technologies are being used outside of school by most people to read, write, calculate and think. There is a strong need to move our public education system towards this lifelong-learning era where people will be engaging in learning throughout their lives.

The Blended Learning model. Implementing a Blended Learning delivery model allows students to have personalization in their learning. It allows the teacher to cater to individual preferences. The online portion of their programs provide the teacher and student with feedback that allow the learner to progress on their own path and at their own pace. This also allows the student to follow some of their own interests as learners are more apt to learn material they are interested in, as well as engaging with lessons to support their specific level of learning.

Another benefit of using blended delivery is the fact that the learner has some control over their own learning. Horn and Staker (2015), state that “Blended Learning is the engine that can power personalized and competency-based learning.” (p. xxvi). Oliver & Stallings (2014),
further explain that Blended Learning also supports different types of learners and learning styles. Blended Learning also provides a way of explaining a concept in the different modalities as students’ progress through the rotations.

Another important aspect of implementing a Blended Learning model in the classroom is that it is interactive. This interactivity is very engaging as demonstrated in the popularity of computer games. Through this interaction, students also are able to confirm or disconfirm their predictions as well as allowing them to try different strategies or paths when solving a problem (Collins and Halverson, 2018). According to Schoppek & Tulis (2010), the academic engagement rate increases when using a Blended Learning model.

Despite blended leaning’s recognized potential at the secondary level, its application in primary educational contexts has remained limited. Mirriahi, Alonzo, & Fox (2015) suggest this can be due to the lack of digital fluency on behalf of both teachers and students. Therefore, they recommend providing professional development for teachers if Blended Learning is to be effectively implemented. The changing roles of the teacher from a deliverer of content to an instructional guide can be very daunting and there needs to be support from administration for this progressive shift to begin. Funding is also one of the main deterrents for districts to begin implementation as the cost of technology tools—specifically iPads and apps—can be staggering. However, new studies suggest that it isn’t necessary for every student to have an individual device as when students share they learn important communication and cooperation skills that are necessary in today’s world (Attard, 2013). Attempting to meet all students’ educational needs led to the Critical Challenge Question which provides context for this graduate study.

Critical Challenge Question
The new BC curriculum sees personalization as a way of meeting the diverse needs of students in our classrooms. This personalization would be of benefit to students and families as it would encourage all to reach their full potential. However, in our current classes with one teacher for 20-22 students how can this personalization be implemented specifically to support primary numeracy instruction? This problem led to my Critical Challenge Question ‘How can a Blended Learning model be applied to facilitate personalization of numeracy instruction for primary students?’

Key Deliverables

The goal of my Major Project was to collectively create a website toolkit that can be used by other primary teachers who want to implement personalized Numeracy instruction into their classroom through a Blended Learning model. This website was co-designed with teaching colleagues Danica Farrell and Gina Farrell who co-developed the resources needed to also personalize Writing and Reading in the primary grades engaging a Blended Learning model. The toolkit is housed on a Weebly website (Appendix A) as detailed in Chapter 3.

Brief Overview of the Project

For my contribution to the project, I focused on numeracy in Mathematics in the primary grades. I developed sections providing resources to help students master specific Mathematics skills. The resources included a variety of apps and websites categorized into the following three categories: apps for individual instructional support, apps for student skill practice and apps for whole class instruction. These apps provide students with individual content assignments, skill practice and ongoing feedback. Research indicates students benefit from using game-based apps where they can practice skills as well as review material and learn new concepts. These programs
provide the student with ongoing feedback and adjust levels according to skill mastery. Some of the apps also provide the teacher with student progress assessment.

The Weebly website also includes a practical section on how to set up a classroom for small group instruction. This section provides teachers with the different Blended Learning Rotation Models used to incorporate mobile technology into the classroom. It provides teachers with resources and examples of what to have students do at hands-on stations (problem-based learning, board games that practice skills, pencil/paper activities etc.), technology stations and teacher stations. Examples are included on how to scaffold students’ learning using mobile technology. There are also lessons/units for teachers to start their year with.

Another section under Numeracy provides assessment practices that are student-based—following the new BC curriculum recommendation for student self-assessment. The website provides teachers with ways to have their students self-assess using technology. It will also supply screencasts on how to upload student information specifically into an eportfolio housed on our District #72 site.

The home page of our website was jointly created and includes three sections. One is about the authors and provides our contact information. Another is titled ‘The Basics’ and provides technology instruction on how to use the main features of an iPad- (logging in/out, turning apps on/off, taking photos, editing, etc.) Another section provides information on digital citizenship and privacy—critical to responsible use of any networked device. This section will include links and suggestions on key learning concepts that need to be addressed before students begin using iPads and accessing the internet. This section also includes adaptable permission forms that follow the FIPPA laws for teachers to modify so their students have proper permission when accessing and using apps and websites.
The Major Project and my proposed project timeline was informed by a comprehensive Literature Review presented in Chapter Two and the key deliverable has been designed as a resource to help B.C. teachers implement personalized Numeracy learning in the primary classroom.

Table 1
Major Project Timeline

<table>
<thead>
<tr>
<th>Major Project Timeline</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chapter 2 Literature Review completed</td>
<td>June 2018</td>
</tr>
<tr>
<td>Chapter 1 Process Paper Introduction completed</td>
<td>August 2018</td>
</tr>
<tr>
<td>Project Build v.1 —Weebly Site</td>
<td>July/August/September 2018</td>
</tr>
<tr>
<td>Chapter 3 Procedures and Methods for Building Online Site completed</td>
<td>August 2018</td>
</tr>
<tr>
<td>Reviewer Field Testing sent—Peer Evaluation using Google Form received</td>
<td>September 2018</td>
</tr>
<tr>
<td>Chapter 4—Beta Field Testing & Findings collated and Chapter complete v. 2 Website Adjustments made and site revisions completed</td>
<td>October 2018</td>
</tr>
<tr>
<td>Chapter 5—Conclusions and Recommendations completed</td>
<td>November 2018</td>
</tr>
<tr>
<td>Finished Process Paper and Major Project Submitted</td>
<td>December 2018</td>
</tr>
</tbody>
</table>

Table 2
Definition of Terms

<table>
<thead>
<tr>
<th>Terms</th>
<th>Definition</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Term</td>
<td>Definition</td>
<td>Resource Link</td>
</tr>
<tr>
<td>-----------------------</td>
<td>---</td>
<td>--</td>
</tr>
<tr>
<td>Blended Learning</td>
<td>The practice of using both online and in-person learning experiences when teaching students.</td>
<td>https://www.edglossary.org/blended-learning/</td>
</tr>
<tr>
<td>Constructivist Learning Theory</td>
<td>People construct their own understanding and knowledge of the world, through experiencing things and reflecting on those experiences.</td>
<td>https://www.thirteen.org/edonline/concept2class/constructivism/</td>
</tr>
<tr>
<td>Digital Fluency</td>
<td>The ability to select and use the appropriate digital tools and technologies to achieve a particular outcome.</td>
<td>https://study.com/academy/lesson/what-is-digital-fluency-definition-example.html</td>
</tr>
<tr>
<td>Individual Rotation</td>
<td>A course or subject in which each student has an individualized playlist and does not necessarily rotate to each available station or modality.</td>
<td>https://www.christenseninstitute.org/blended-learning-definitions-and-models/</td>
</tr>
<tr>
<td>Information Age</td>
<td>The modern age regarded as a time in which information has become a commodity that is quickly and widely disseminated and easily available</td>
<td>https://www.merriam-webster.com/dictionary/Information%20Age</td>
</tr>
<tr>
<td>Term</td>
<td>Definition</td>
<td>Link</td>
</tr>
<tr>
<td>--------------------------</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Lab Rotation</td>
<td>A course or subject in which students rotate to a computer lab for the online-learning station.</td>
<td>https://www.christenseninstitute.org/blended-learning-definitions-and-models/</td>
</tr>
<tr>
<td>Mobile Devices</td>
<td>A handheld tablet or other device that is made for portability, and is therefore both compact and lightweight.</td>
<td>https://www.techopedia.com/definition/23586/mobile-device</td>
</tr>
<tr>
<td>Personalized Learning</td>
<td>A learning experience designed for each student with their specific needs in mind.</td>
<td>https://www.teachthought.com/learning/the-definition-of-personalized-learning/</td>
</tr>
<tr>
<td>Scaffolding</td>
<td>Refers to a variety of instructional techniques used to move students progressively toward stronger understanding and, ultimately, greater independence in the learning process.</td>
<td>https://www.edglossary.org/scaffolding/</td>
</tr>
<tr>
<td>Station Rotation Model</td>
<td>The Station Rotation model allows students to rotate through stations on a</td>
<td>https://www.blendedlearning.org/models/</td>
</tr>
<tr>
<td>Term</td>
<td>Definition</td>
<td>Link</td>
</tr>
<tr>
<td>------------------------------------</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Student Agency</td>
<td>Is learning through activities that are meaningful and relevant to learners, driven by their interests, and often self-initiated with appropriate guidance from a teacher.</td>
<td>https://www.renaissance.com/edwords/student-agency/</td>
</tr>
<tr>
<td>Universal Design for Learning (UDL)</td>
<td>A set of principles for curriculum development that give all individuals equal opportunities to learn.</td>
<td>http://www.udlcenter.org/aboutudl/whatisudl</td>
</tr>
<tr>
<td>Zone of Proximal Development (ZPD)</td>
<td>The range of abilities that an individual can perform with assistance but cannot yet perform independently. Created by Lev Vygotsky.</td>
<td>https://www.verywellmind.com/what-is-the-zone-of-proximal-development-2796034</td>
</tr>
</tbody>
</table>
Chapter 2 – Literature Review

Primary BlendED — Numeracy

Introduction

Schools were originally designed for the industrial age when most students leaving high school entered factory jobs. In today's world, graduating students will be applying for jobs that require a greater knowledge and skill set than their predecessors. We are now in the information age where, with technology, knowledge is at everyone's fingertips. With the demand for 21st Century skills in the workplace, our education system needs to change in order to produce “well-educated citizens who are able to think critically and creatively and adapt to change” (“Curriculum Overview | Building Student Success - BC’s New Curriculum,” 2018, para. 8).

Students don’t learn at the same pace; this attribute even varies from subject to subject (Horn and Staker, 2015). We all have different aptitudes and bring different prior knowledge to each learning experience. This affects the speed of knowledge retention as well as how we gain knowledge. The new BC curriculum sees personalization as a way of ensuring all students’ diverse needs are met and students achieve their full potential. Through high quality and engaging learning opportunities, flexible timing and pacing, and with tailored learning supports that meets students’ needs (“Curriculum Overview | Building Student Success - BC’s New Curriculum,” 2018).

One way to personalize learning in a primary classroom, which typically has an adult to child ratio of 1:22, is to use a Blended Learning delivery model. This practical application led to my Critical Challenge Question ‘How can a Blended Learning model be applied to facilitate personalization of numeracy instruction for primary students?’ which will be addressed by this Literature Review.
This Literature Review will define Blended Learning, reveal which model is best suited in primary education and examine the challenges and benefits of implementing a Blended Learning model in a face-to-face classroom. It will explore what is essential to personalize numeracy in a face-to-face classroom as well as, consider the current research to determine what mobile devices and apps might help to facilitate the study of Mathematics for primary students. Lastly, the Literature Review will explore the correlation between the rotation model and achievement in Mathematics in the primary classroom.

What is Blended Learning and Which Model Works Best for Primary Students?

Blended Learning is the mix of face-to-face instruction with online learning components. Horn and Staker (2015), define Blended Learning as “any formal education program in which a student learns at least in part through online learning, with some element of student control over time, place, path, and/or pace” (p. 34). The face-to-face aspect takes place in a school or learning center that is away from the student’s home. Both learning environments work together to provide the students with an integrated learning experience. Horn and Staker present four main types of Blended Learning models that are currently being used in various educational settings. These include: the Rotation model; Flex model; A La Carte model; and the Enriched Virtual model.

Face-to-face schools are moving toward a more hybrid model in “an attempt to deliver ‘the best of both worlds’— that is, the advantages of online learning combined with all the benefits of the traditional classroom”(Christensen, Horn, & Staker, 2013, p.5). The hybrid models that appear to work best for teachers of primary students, wanting to begin using Blended Learning are the Rotation models where “students rotate— either on a fixed schedule or at the
teacher’s discretion—among learning modalities, at least one of which is online learning” (Horn & Staker, 2015, p. 37).

“One of the key reasons why teachers and schools should consider blending is for the ability to better support different types of learners” (Oliver & Stallings, 2014, p.7). In Mathematics, not all students are learning at the same pace, therefore one lesson cannot possibly address all student needs. Using a Station Rotation approach would allow the teacher to work with smaller groups, while others would be able to work independently on their individual assignments using technology. Research demonstrates that “practicing with the computer increased students' academic engagement rate while allowing for teachers to provide direct instruction to small groups” (Schoppek & Tulis, 2010, p. 10). Using the Rotation model in our face-to-face classroom would allow teachers to help personalize instruction for all learners.

Challenges to Implementing a Station Rotation Model in a Primary Classroom

Despite the advantages that a Station Rotation model, that incorporates mobile devices, offers both over face-to-face instruction and fully online instruction, there are still some barriers to implementing it at the primary level. The most notable challenge is the lack of digital fluency on the part of both the teachers and students (Mirriahi, Alonzo, & Fox, 2015, p. 11). Professional development time is needed for teachers to effectively implement a Blended Learning environment. This is deemed important as “research reminds us that changing the medium or modality of instruction requires more than just new technology, but also new attitudes and skillsets” (Laura Kassner, 2013, p. 12). It also takes more time to plan a Blended Learning course than a face-to-face course (Oliver & Stallings, 2014). Teachers must take on the role of an instructional guide versus the traditional deliverer of content.
Primary students also need to learn proper digital skills in order to be successful in a Station Rotation approach. In Kenney and Newcombe’s (2011) study they found, “one weakness of the approach mentioned by the students was the difficulty of learning on their own and not being able to immediately ask questions if they were unsure about the material” (p. 9). When working with primary students, it is necessary to scaffold both the technology skills as well as the concept learning skills when designing a Station Rotation program. “Blended teaching presents the content in an attractive manner, due to the various effects, which enables meeting the different levels of the students, and designing activities which are appropriate to the real levels of the students” (Yaghmour, 2016, p. 7). Many primary blending models make use of peer tutors where students are often helping each other during their technology station. Catherine Attard (2013) notes, the lack of having a 1:1 ratio of iPads per students encourages sharing and “sharing promotes reasoning and supports the development of mathematical language” (p. 39).

Understanding the benefits and challenges of implementing a Station Rotation model, primary educators need to consider what the essential components are to personalize numeracy instruction in a face-to-face classroom.

What Considerations are Essential to Personalizing Numeracy in a Face-to-Face Blended Classroom?

Pedagogy to support primary Mathematics instruction. Research on effective Mathematics teaching is based on the constructivist learning theory where students build or construct their knowledge from experience and previous understandings (Simon, 1995). As educators we need to be able to access where students are at, in order to provide activities and problems that are at their level of understanding. Students then can access their prior knowledge to construct new meaning. Students need to be active in this process and the teacher is more of
the guide, allowing the students to construct their understanding. Del & Diaz (2017) state, that students need to “master the basic strategies of computation using them in different contexts” (p. 3). Using a Blended Learning model allows students to progress at their own speed and develop mastery of these skills. The 20th Century psychologist Lev Vygotsky argued that for optimal learning to occur students need to be in the zone of proximal development (McLeod, 2012). Using a Blended Learning Station Rotation approach allows teachers to work with smaller groups to promote this optimal learning environment for all students.

Personalized learning. A variety of considerations need to be addressed in order for personalization to happen in the primary classroom. To personalize Blended Learning, Hunsinger- Hoff (2016) states, “personalized learning can’t be realized unless teachers know their students well—their interests, their prior experience and learning, and what motivates them”(p. 3). The author suggests using the first few weeks of school to get to know students by providing them with personal surveys and presenting technical activities that allow the teacher to get to know each student as an individual. These mini lessons should be two-pronged in the sense that you teach a concept as well as provide technical lessons. Not only do teachers need to learn about student’s interests and prior knowledge, they also need to learn how their students view themselves as learners. The author goes on to state,

> It is indeed empowering for every student to know that they are smart in some, usually several, ways. Empowering students by guiding them to discover and take pride in their strengths, as well as acknowledge and accept their shortcomings as opportunities can set the stage for a year-long quest in the classroom when intelligences are recognized and celebrated (p.7).
Mastery learning. To fully personalize learning educators must allow students to master skills in a content area (Horn & Staker, 2015). This is especially important when learning Mathematics as students need mastery of subskills in order to fully grasp higher skills. In typical face-to-face classrooms the time needed to develop mastery skills is simply not available, which often creates frustration for students who are not ready to move on to more advanced skills. Yaghmour (2016) suggests that one-way Blended Learning addresses this is through repetition, one of the most important features of Blended Learning, and one of the factors which contribute to its success, because it enables learners to receive the same message from several sources, in different forms and at different times (p.2).

Kenney & Newcombe (2011) encourage teachers to take time to decide what should be delivered online and what should be taught face-to-face in the Blended Learning classroom. They advise teachers “to make sure that the two components are blended or integrated thus complementing each other” (p.6). What Mathematics the teacher delivers online must review and assess their understanding of what Mathematics is taught face-to-face. It is imperative that the apps and programs have assessment tools built in that can provide the teacher with information as to what concepts students are grasping and what may need further instruction. This personalization would ensure that their level of instruction was ‘just right’ in making students feel successful. In Mathematics students don’t often grasp concepts the first time therefore “Blended Learning is more compatible with the pace of the student, which enables it to improve the achievement of the students” (Yaghmour 2016, p. 8).

When student-centered learning is done well, it creates a sense of student agency and ownership for their progress and helps them guide their own learning. This helps students to
BLENDED LEARNING – NUMERACY

develop the learning skills needed to be successful “in today's rapidly changing world, in which knowledge and skills become outdated quickly” (Horn & Staker, 2015, p. xxvi).

Many students are more motivated to complete their work by using technology as it is perceived by young children to be fun and engaging. A study of first year primary students found that “70% of the students consider that learning is easier when educational software is used” (Zaldívar-Colado, Alvarado-Vázquez, & Rubio-Patrón, 2017, p. 8). Since using technology is very motivational what devices are best suited for primary students?

What Devices Can be Used for Implementing Blended Learning?

Research has shown that the use of mobile devices in primary classrooms directly improves student agency, engagement and motivation. Mobile devices increase the accessibility of content for all learners. Levy (2014) explained that, “iPads act as a translation, communication, and individualization tool with unrivaled effectiveness. In so doing, these devices reduce frustration, build confidence, and, well, just work in teaching students the skills they need to learn to thrive” (para. 1). Additionally, students with disabilities benefit from these alternative ways of learning and exploring which also provides them a supplementary way to show their understanding.

There are many advantages to using iPads in the classroom. “Devices within school environments is their ready access to the Internet and other resources, longer battery life, size, and a short learning curve”(Crichton, Pegler, & White, 2012, p. 29). iPads are portable and can be used in a variety of settings. Overall, iPads with their touch screens are the most desirable mobile device to be used in primary classrooms. They’re intuitive nature using icons makes navigating apps and websites more manageable for the younger learner. When educators choose
apps for their students they need to take into account the design, versatility and the educational benefits.

What Apps and Websites are Best Suited for Primary Students?

Design principals. Ease of use needs to be addressed when choosing an app or device for our young learners. “Educational software in general should be easy to use, intuitive, interesting, and, of course, effective in producing learning in students” (Zaldívar-Colado et al., 2017, p. 5).

Teachers need to consider choosing apps that have clear, direct instructions for students as primary students can be distracted when apps are not straightforward. Apps that use audio are also very important. Zaldivar-Colada et al. (2017) express that,

given that first-year primary students still do not read well in general, it would help them to concentrate if the educational software gives students instruction through audio, and if students can answer either through audio or through clicking on displayed options (p. 10).

Another consideration when choosing Mathematical apps and websites for primary students is whether the program builds in the scaffolding skills. When choosing apps for Mathematics, you want to be cognoscente of how the app will help provide the instructor with information on individual student progression and understanding. This information will help guide the instructor as to what to review or teach them next. Many apps have built in diagnostics and will adjust the assignments according to the student’s unique skill development. This allows the students to work “on problems requiring skills that are in the associative phase of their development which is efficient because no student is forced to practice procedures he or she has not yet understood or procedures that are already automatic” (Schoppek & Tulis, 2010, p. 3). This embedded assessment tool “frees teachers from the mundane tasks of grading rote items and provide immediate feedback for students and parents” (M.West, 2013, p. 7).
Evaluating apps and websites. Haelle (2017) suggests filtering apps using the following five key questions. Does it promote active mental engagement (thinking, predicting, questioning, drawing connections, and reflecting)? Will it help focus students learning without having distractions built into the app? Does it scaffold learning? Is it interactive and provide either feedback through the teacher or app? Does it clearly define objectives that can be tracked and assessed by the student or teacher? Given these five key questions educators can make knowledgeable choices when selecting appropriate apps for primary Mathematics instruction.

Apps that are recommended for use in personalization are apps that allow students to show what they know and provide teachers insight into how they approach and solve problems, which “enables teachers to see explicitly how children’s brains work differently” (Hunsinger-Hoff, 2016, p. 6). Websites and apps that enable teachers to create customized surveys for students, which provide insight into multiple intelligences, as well as finding students’ motivations and interests are valuable because of their ability to gather information as well as assessment, making them great additions to a Blended Learning classroom.

Choosing Mathematic apps for primary instruction. Mathematical apps that work well with primary students allow the teacher to create assignments and have students’ progress at their own pace once they have mastered the previous concepts. These programs need to provide teachers with diagnostic data on individual student understanding. They also need to provide students with immediate feedback and teachers with ongoing assessment, which helps guide the face-to-face small group instruction. These apps also allow students to progress beyond their grade level providing challenges and reducing boredom that they often experience in a traditional face-to-face classroom. Educators know that when students are working in their ‘zone of proximal development’ they are more liking to achieve Mathematical fluency.
Correlations Between Blended Learning Rotation Models and Achievement

There are many advantages to Blended Learning including increasing student information literacy skills, self-regulation and time management skills, self-monitoring of progress due to increased teacher and/or system feedback, motivation and opportunities to work at one's own pace and allowing for increased understanding (Oliver and Stallings, 2014). In a study of third grade students using a Rotation Model in math twice a week showed “that even a moderate amount of individualized practice was associated with large improvements of arithmetic skills and problem solving, even after a follow-up period of 3 months” (Schoppek & Tulis, 2010, p. 2). This extra practice time allowed students to solidify skills in their associative level which allowed students to master a skill before moving on. This skill acquisition is not a short-term gain as demonstrated in another study of first grade students using educational software in Mexico, which showed positive benefits after a year (Zaldívar-Colado et al., 2017). In another study, Yaghmour (2016) also found using a Blended Learning approach demonstrated statistical difference in student achievement in grade 3 mathematics (Yaghmour, 2016). Evidence that support these findings include individualization, skill practice at ‘just right levels’, smaller group instruction and student’s ability to achieve mastery before moving on.

An additional study with positive results showed eighth graders using Mathematical software to support their Blended Learning. This study also found “that students who experience greater achievement in a self-paced blended course have more positive attitudes toward Mathematics at the end of the course” (Balentyne & Varga, 2017, p. 67). Although this study was conducted with older children, the correlation between achievement and attitude is also something to be aware of when teaching younger students. Educators need to ensure students
feel good about themselves at an early age and if there is a way of encouraging and promoting a positive attitude towards Mathematics, then they need to follow those suggestions.

Conclusions

An educational shift towards incorporating technology in face-to-face education is needed to better meet the needs of all students and provide them with the skills necessary to be successful in the 21st Century. Through my research I found Blended Learning to be an effective way to engage our students, while providing instruction and learning on a personalized, individual basis. The educator benefits by receiving instant feedback on the students’ progress, and the ability to observe the learners’ performance and needs which, subsequently provides information to support small group instruction. Blended Learning allows students time to master skills before moving on - it puts them in their optimal zone for learning where the level of difficulty is ‘just right’. This in turn makes all learners feel successful and helps develop a positive attitude towards their Mathematical abilities. Students are also more motivated to spend time working through problems, as using technology aligns with what is happening in the technology-enhanced world outside of school.

Blended Learning may not be the solution to all of the problems that our education system faces but it allows students flexibility in the way they learn Math. Technology allows students to have access to lessons and resources from online databases, as well as providing them with an avenue to review and practice material independently. Most importantly it allows students to master Mathematical skills while working at their individual pace. Blended Learning meets the focus of the new BC curriculum as it provides “flexible teaching and learning, and an emphasis on building a strong foundation of mathematical understanding and skills” (“Mathematics | Building Student Success - BC’s New Curriculum,” 2018, para. 4)
Overall, Blended Learning is an effective way to personalize numeracy in our face-to-face Math classrooms. The research returned little information on how Blended Learning might open communication between home and school. This leaves me to wonder if parents are more aware of what and how their child learns when engaged in a Blended Learning program?

The conclusions drawn from this comprehensive Literature Review will be applied to the Major Project design and development as presented in Chapter 3.
Literature Review

Primary BlendED — Reading

Introduction

Children are unique individuals with specific needs that are exclusive to them. They grow and move through different stages of development at various paces. Childhood development looks different for each child, so why, in so many ways, does our education system not honour this? The new British Columbia Education Plan states, “the key focus is personalized learning” (BC Ministry of Education, 2015, p. 1). Children learn at different paces and through a variety of learning styles that need to be recognized and embraced.

This Literature Review is an examination of how a Blended Learning model can be applied to facilitate personalization in the area of Reading instruction for primary students. It addresses what Blended Learning is, why educators may choose to use it and what model of Blended Learning is most effective in a face-to-face diverse primary classroom. It establishes how a blended model can personalize student learning and enhance engagement. The review identifies some of the barriers to implementing a Blended Learning environment faced by educators.

Early Primary students enter school with various strengths and abilities. In order for them to learn to read there are certain skills that need to be mastered. According to the 2016 research report, “Read About It: Scientific Evidence for Effective Teaching of Reading” there are five key areas that are crucial in the success of learning to read. The findings state that these five areas are:

1. Phonemic awareness: The ability to hear and identify individual sounds in spoken words
2. Phonics: The relationship between the letters of written language and the sounds of spoken language

3. Fluency: The capacity to read text accurately and quickly

4. Vocabulary: All the words students must know to communicate effectively

5. Comprehension: The ability to understand what has been read (Hempenstall & Buckingham, 2016, pp. 4-5)

The very fact that students develop and learn to read at different rates leads to the importance of establishing a Blended Learning model. A blended model will grant students the ability to learn at their individual, developmental pace, and master concepts through personalized learning.

Through my research investigations, I will demonstrate how specifically implementing a Station Rotation Blended Learning model for reading instruction will allow primary school students to grow and learn at their individual level and pace to meet the mandate of the new BC curriculum.

Defining Blended Learning

There are a wide variety of pedagogical teaching methods available to educators today, and Blended Learning is among them. What is Blended Learning? Blended Learning is defined as education delivered in part online and in part face-to-face. Students are in control of some element of their learning being it time, place, path and/or pace. As well, the subject the student is learning online and face-to-face is connected to create an integrated learning experience (Horn & Staker, 2015). Horn and Staker (2015) identify the four main models of Blended Learning as the Rotation model, Flex model, A La Carte and the Enriched Virtual model.
Rotation model. In the Rotation model there are four-sub categories-Station Rotation, Lab Rotation, Flipped Classroom and Individual Rotation. In the Station Rotation model, typically students work with the teacher in small groups at their targeted skill level, and then rotate through an in class technology station and a peer and/or individual station to put the skills learned at the teacher station into practice. Lab Rotation is like Station Rotation but students move to a computer lab for the technology rotation. Flipped classroom consists of students independently receiving online lectures or lessons and then using classroom time with the teacher to solidify understanding. Finally, the Individual Rotation model has students rotating through on an individual, customized schedule set-up through either the teacher or through a computerized algorithm. (Horn & Staker, 2015)

Flex model. The Flex model, unlike the Rotation model, starts “with online learning and add[s] physical supports and connections where valuable” (Horn & Staker, 2015, p.47). Online learning is the main component of student learning in the Flex model.

A La Carte model. The A La Carte Blended Learning model is mostly implemented at the high school level. Students take some entirely online courses while also attending classes at a face-to-face bricks and mortar school (Horn & Staker, 2015).

Enriched Virtual model. The Enriched Virtual Blended Learning model is set up so students have set days and times that they are in a face-to-face classroom environment, and the remainder of the time they work independently online whenever and from wherever they prefer (Horn & Staker, 2015).

It is quite common for schools to use a variety of these models by combining them in different ways to reach a customized program (Staker & Horn, 2012, p. 2). Now that we have an
understanding of the different Blended Learning models we need to look at why educators would choose to blend the face-to-face primary classroom with an online component.

Why Blended Learning?

The primary classroom, like most K-12 classrooms, is filled with students that have varying, complex and unique learning needs. The days of teaching to the middle level in hopes of reaching the majority of students are gone. Kaye Thorne (2006) author of eBook, “Essential Creativity in the Classroom-Inspiring Kids” states, “Blended Learning represents a real opportunity to create learning experiences which can provide the right learning at the right time and in the right place for each and every individual” (p. 105). Educators strive to meet individual student’s needs and personalize a learning program to fit those needs. Using a Station Rotation Blended Learning model is one way for primary teachers to customize programs for individual students. Allowing students to work at their own pace and providing time for practice has been shown to benefit the struggling student (Schechter, Macaruso, Kazakoff, & Brooke, 2015).

There are six main reasons why educators may choose to implement a Blended Learning model, or models, into their practice, including pedagogical richness, access to knowledge, social interaction, personal agency, cost effectiveness, and ease of revision. However, the overwhelming rationale for implementing Blended Learning is the combination of the best of both worlds (Bonk & Graham, 2005). Stein and Graham (2014) state, “the wealth and availability of information continues to grow at astounding rates, and the skills and knowledge that workers need to thrive in this twenty-first century are ever changing” (p. 12). Exposing students to the digital world prepares them for their futures and the jobs that are yet to be invented. A deeper, more thought-provoking reason for the application of Blended Learning comes from Thorne (2006)
It [Blended Learning] presents an elegant solution to the challenges of tailoring learning and development to the needs of individuals. It also represents an opportunity to integrate the innovative and technological advances offered by online learning with the interaction and participation offered in the best of traditional learning (p. 104).

Utilizing Blended Learning in the classroom assists educators in successfully adapting learning for students through different, more innovative, means to deliver the curriculum. According to Stein and Graham (2014), “Educational research suggests blended courses are more effective compared to both face-to-face and online” (p. 15). A 2009 report on 51 empirical studies, comparing online education with traditional face-to-face courses, concluded that combining online and face-to-face instruction created a greater educational advantage for students (Stein, J., & Graham, 2014). If Blended Learning creates greater educational advantages, educators need to look more deeply at what method and devices would be best utilized in a face-to-face bricks and mortar primary classroom when applying this delivery model.

Considerations to Blending the Primary Classroom

Devices and screen time. Technology brings with it a level of skill, dexterity and patience most primary students have yet to achieve. According to Neumann and Neumann (2017), “Unlike personal computers that require more complex fine motor skills to operate, the intuitive touch-based interface of tablets make them easy to use” (p. 204), allowing even young students the opportunity to interact with and learn through technology. Most educators would agree that it is not an ideal situation for young primary students to be in front of screens for long periods of time. The time spent on devices must be thoughtfully considered to ensure students are engaged in active vs. passive screen time.
In their paper titled, “Active Versus Passive Screen Time for Young Children,” the authors describe active screen time as time spent engaging in either cognitive or physical activities such as video games or homework. Whereas, they describe passive, sedentary screen time as watching television or videos (Sweetser, Penelope, Johnson Daniel, Ozdowska Anne, 2012). The authors go on to state, “there is a substantial body of research that illustrates the benefits of Active Screen Time in terms of cognitive skills and development” (p. 96). With this information in mind it is important that students are exposed to different technologies that allow for active screen time that enhances their learning. The benefits of active screen time and allowing students to work at their own pace or level, needs to outweigh the negatives associated with passive screen time. The Station Rotation model of Blended Learning affords the educator a well-balanced amount of active screen time, which benefits the learner, engaged in these digital learning experiences.

Station Rotation Blended Learning model. The Station Rotation model seems the obvious choice for adapting the face-to-face primary classroom setting. Many traditional classrooms already have a similar form of rotations minus the technology rotation. With a Station Rotation delivery model, students would be accessing individually levelled online content for approximately 15-20 minutes during the technology rotation aspect.

A case study of the Station Rotation model in a third grade classroom suggests five lessons for future educators to consider when implementing Blended Learning into their face-to-face classroom. These five suggestions include giving yourself permission to make mistakes and learn from those mistakes, to be flexible, to start small, and to not worry about blending every subject, every day, to remember that teaching a whole class lesson is needed sometimes, and to collaborate with other Blended Learning educators (Truitt, 2016).
There are many additional considerations educators need to examine before implementing a Station Rotation Blended Learning model into their practice. Before introducing technology into classroom rotations, we need to consider the benefits and challenges that we may face when blending a primary face-to-face classroom using a station rotation model.

The Pedagogical Benefits and Challenges to a Station Rotation Blended Learning Model

The benefits. There are four key benefits to implementing the Station Rotation model in a primary classroom. The first benefit is that it frees up the educator and allows them to work on targeted skills, with small groups of students. Secondly, it allows students to work at their individual pace mastering skills and creating more engagement with their work. Thirdly, it allows for student creativity by engaging with different technology applications and finally, it allows for flexibility of student movement within the different rotation groups depending on their prior knowledge and strengths of a topic (Casey, 2016).

The challenges. With any new idea that we bring to the classroom to make learning more accessible, and engaging, we must be aware that there will also be challenges. Challenges are not necessarily negative however. Armed with knowledge of possible challenges prepares the educator and allows time for them to face these challenges head on. Some challenges encountered in a study of a fourth grade class were technology applications not working properly or technology updates interrupting the learning during a rotation, off task behaviour of students during the independent technology rotation and, the noise level in the classroom in general, and particularly, while transitioning from station to station (Casey, 2016). While these create an added stress for teachers in regards to classroom management, they don’t outweigh the benefits of implementing a Station Rotation model in a primary face-to-face classroom.

Routines and relationship building are essential to help address these challenges. A study
conducted in primary classrooms at the beginning of the school year found effective teachers build relationships and routines with their students, which teaches students how to be self-regulated learners (Bohn, Roehrig, & Pressley, 2004). Building routines and expectations not only around classroom culture and expectations, but also around the use and expectations around technology is imperative. Once these expectations and routines are formed, educators will have the tools necessary to begin personalizing reading (or other instruction) for students engaging in a Station Rotation model.

Personalizing Reading Instruction for Primary Students

What exactly do primary teachers want to improve for their struggling to read students? What is missing for these students that is a barrier to their learning and engagement? Many students lack the very basic reading skills such as the ability to rhyme, identify rhymes, hear and say phonics sounds, and blend sounds to create words. Would students advance in these areas if they were given the opportunity to have targeted small group, teacher led lessons, complimented with specific skill development through the use of technology?

One study, conducted over two consecutive school years using iPads with the lowest reading group of first graders, found students made elevated average gains, increases in time-on-task behaviour, increased engagement when using targeted reading skills and improved reading skills overall (Burns, Larabee, & Jennifer, 2014).

Similarly, a group of four kindergarten students using a computerized tutoring program focusing on letter sounds resulted in improvements in letter sound knowledge and fluency. The authors state, “educational technologies may work best as supporters and facilitators of quality reading instruction rather than replacements for teaching” (Burns et al., 2014, p. 452).
Another study used a Computer-Assisted Learning (CAL) program, Accelerated Reader (AR), where the study results confirmed that computer-assisted learning had a positive impact on elementary students’ reading achievement. The study noted that students who engaged in the CAL reading program had greater learning gains than that of their traditionally-taught peers (Shannon, Styers, Wilkerson, & Peery, 2015). This demonstrates the need for a Blended Learning model, like Station Rotation, for meeting the targeted needs of primary students. Using a Station Rotation model to personalize reading instruction sounds like a direct-route to meeting individual student needs, but there are barriers to implementing a Blended Learning program that need to be considered.

Barriers to Implementing a Blended Learning Program

There are always barriers to implementing any new or different way of teaching, but if we identify and arm ourselves with background knowledge the barriers become less obstructive, and more like minor hurdles to clear. In ‘Knocking Down Barriers’ the authors identify two main barriers for the face-to-face elementary education system to consider before implementing a Blended Learning program. These barriers include the redesigning of teacher roles and the purchase and management of the technology and infrastructure (Horn, Gu, & Evans, 2015). Traditionally, teacher roles in the elementary classroom include teaching all the subjects areas to their entire class of students. For Blended Learning success, this may need to develop into a more cooperative teaching model with more open spaces and multiple teachers supervising the learning (Horn et al., 2015).

Another barrier faced by educators wanting to begin a Blended Learning program is that of technology and infrastructure. Funding is always an issue in education and implementing technology brings with it the need to purchase and manage technological devices and
infrastructure. Educators need to advocate the benefits that technology brings to the personalization of student learning. When the powers that be have a clearer understanding of these benefits they are more apt to find ways to implement. This could be as simple as looking to other districts already doing something similar to what they envision, allowing students to bring their own device and only providing devices for those students who do not have one, and finally looking at outside funding and or grants that can be applied for in order to get started (Horn et al., 2015).

Conclusions

Technology is a huge part of everyday life in the 21st Century. New applications and devices are being created almost daily to seemingly enhance and improve our day-to-day lives. Just as students today are not like those of thirty years ago, nor should the education system stay the same as the model developed during the industrial revolution. Technology is, and should be, playing a new role in the education of students today. One of the positive aspects of technology is its role in facilitating a more personalized education for individual learners. Students are not all the same, and therefore their educational programs should not all look alike. Every student should be given the opportunity to learn and grow at his or her individual pace. Utilizing a Station Rotation Blended Learning model in the primary face-to-face classroom supports this personalization. As the 20th Century educational reformer John Dewey (n.d.) stated, “If we teach today’s students as we taught yesterdays, we rob them of tomorrow.”

British Columbia educators need to understand what, and how, technology can reform the education system for the 21st Century. They need to be advocates for technology and Blended Learning models in order to meet the government’s mandate to personalize student learning and promote critical and creative thinking, collaboration and communication (“BC’s New
Curriculum,” n.d.). As Stein and Graham (2014) contend, “using connected mobile tools such as Smartphones, tablets, and laptops, we purposefully “blend” physical and online activities to create optimal experiences” (p. 9). Together with technology we can meet the needs of all students and personalize the education system in support of the ‘educated citizen’ described in the new curriculum.

The findings of this comprehensive Literature Review will be applied to the design and development of my Master of Education in Educational Leadership (MEdL) Major Project as presented in Chapter 3 of this Process Paper.
Literature Review

Primary BlendED — Writing

Introduction

In my face-to-face primary grade 1 and 2 classroom, I have been interested in looking at how mobile technology can support my beginning writers. In researching my Critical Challenge Question, “How can a Blended Learning model be applied to facilitate personalization of writing instruction for primary students?” I have found that there is some literature to specifically support Blended Learning in a primary face to face classroom, but many gaps still exist. In this Literature Review, I investigate how technology can support writing in a face-to-face classroom which also engages a Blended Learning delivery model.

It seems as though blended delivery is still a topic that challenges the beliefs of many educators. Education is changing. It is changing at a rapid pace, and not everyone is ready for the changes that need to come. Today’s students are not the same students as in the past who were dependent on teachers and parents to directly deliver information or knowledge. Students are now using iPads, iPods, Smartphones, computers and software programs in every aspect of their lives, (Alkhamis, 2015). To keep our students engaged, and to prepare them for their futures, educators must be willing to embrace the changes in education and pedagogy. Technology is evolving at such a rapid rate, and we need to evolve our teaching styles alongside this shift. Technology and mobile devices can play a key role in our teaching and in our students learning. These tools can be used to effectively support a blended delivery model.

The Change Towards Blended Learning
Change in education is coming, and not everyone is ready for it. Our culture of teaching and learning is a deeply embedded ideal, often defined by how we were taught— it is all we know, after all (McLeod et al, 2014). Technology in education is becoming a new reality, and students in the 21st Century are benefiting from the positive change it brings. Blended Learning and the use of technology in primary classrooms, is still a very new concept. To have a blended model work in a primary classroom it will be essential to understand what Blended Learning is.

Blended Learning has a two-part definition. (Horn and Staker, 2012) explain that,

Blended Learning is a formal education program in which a student learns at least in part through online delivery of content and instruction with some element of student control over time, place, path, and/or pace and, at least in part, at a supervised brick-and-mortar location away from home (p.3).

Elements of Blended Learning. The two elements of Blended Learning that are essential for any program are: student control over path and pace; as well as being present in a classroom for part of the students’ learning. What students learn online must influence what they learn face-to-face, and it is necessary for the teacher to be involved and be tracking (through the online program’s teacher feedback feature) what students are doing at home so that they can support and scaffold students learning at school. This could facilitate a teacher sharing a program with students that they access at both home and school— where the teacher is provided formative feedback as to how their students are progressing via questions within the program. (Horn and Staker, 2012) state that someone associated with the brick-and-mortar setting provides the supervision for online learning, rather than a parent or other adult. Teachers are still essential to a successful online or Blended Learning program. Blended Learning, as a whole, looks different in many settings. Teachers can apply a blended model of learning to many face-to-face
classrooms given the appropriate amount of technology and structure is in place to support this delivery option.

Thibault et al., (2015) found that the connections among agents and tools in a Blended Learning environment are rich and diverse, enhancing the process of distributed cognition across its elements. Blended Learning can be a beneficial practice for both the educator as well as the learner as Blended Learning leads to personalization in education. To effectively blend a face-to-face primary classroom, it could be beneficial to implement a Rotation model of education in a face to face classroom.

The Rotation Model

A Rotation model is a model that best supports a blended face-to-face classroom. (Horn and Staker, 2012) define a Rotation model – as, “a program in which within a given course or subject (e.g., math), students rotate on a fixed schedule or at the teacher’s discretion between learning modalities, at least one of which is online learning” (p.8). Teachers are able to personalize learning for students and this will ensure that student centered learning is at the forefront of all learning opportunities. Using a Rotation model, teachers with student-centered beliefs can integrate technology in the classroom in more student-centered ways (Ertmer and Ottenbreit-Leftwich, 2010). In a primary classroom, Blended Learning can be applied to have students working in a Rotation model, where they are in a classroom every day, but where they still have choice over time, place and pace of their learning in a specific subject area. This control of time and place may have students choosing which days of the week they use technology.

A Rotation model would support a primary classroom that is using mobile technology such as iPads or a class set of Chromebooks. Mobile learning eliminates the need to have special
dedicated computer labs and offers teachers full freedom to let students work with online applications whenever they need to (UNESCO, 2010).

Station Rotation model. Specifically, within the described Rotation model, a Station Rotation approach is the most practical application of Blended Learning in a primary classroom. A Station Rotation model is a Rotation model implementation where a given course or subject (e.g., Math) has students rotate on a fixed schedule, or at the teacher’s discretion, among classroom-based learning modalities. The rotation includes at least one station with Internet access for online learning, (Horn and Staker, 2012). Using a Station Rotation model would support the learning that is already taking place in most primary classrooms. Students are accustomed to seeing the Station Rotation approach, so if teachers are utilizing that model and implementing technology rotations, students would be gently scaffolded into using technology. Before we can let students begin to delve into the technology and applications that we want them to be using, students need to be informed about digital citizenship and internet safety.

Digital Citizenship and Internet Safety in Primary Classrooms

The Internet can be a large, formidable open resource. It can be a source of anxiety for educators when they start to use a Blended Learning model. Wohlwend (2009) emphasized that understanding technology has become an important preparation for life. When we, as educators, choose what technology to bring into our classrooms, and also our students lives, we must be mindful to choose programs that are safe and that support our students in being informed digital citizens. All too often we hear of students who have used the Internet in a negative way, for example, bullying other children using social media. It is important to instill early on, a set of values and beliefs around being responsible digital stewards. As primary classrooms typically
form class sets of beliefs and values, we can build from the values and classroom guidelines that we already have in place and apply them to online classrooms or content.

Children need to be taught that what they share online stays there. They need to be informed that they are responsible for what they put out into the networked world. They also need to know that the Internet is not always safe, and that there are things we can do to protect ourselves amidst a technology-infused world. The current generation of students was born into a society where technology is ubiquitous, and this generation is very familiar, and comfortable, with technology (Alkhamis, 2015). This level of comfort can sometimes lead students into a false sense of security. When using technology with students, it is important to be aware of what they are doing with their mobile devices as well as constantly leading by example as to how they should behave when they are using Internet-connected mobile devices. When teachers evaluate and select the apps and programs that students use, they need to be aware of the specific purpose and be making the best decisions that they can regarding suitability and appropriate use. Educators should be testing the programs before implementing them with a class so that they can see where some of the challenges may lie.

Personal Writing, Story Writing and Mobile Devices in Writing

Mobile learning needs to be understood as an emerging repertoire of learning and teaching practices rooted in the belief that interaction and collaboration within a traditional classroom are often not as effective as they could be (UNESCO, 2010). Mobile devices will enable students to collaborate and interact with one another in new ways. For example, students can use devices to work collaboratively to create stories. Paul (2016) states that his general guiding principle is “to use handwriting to process and digital tools to create and demonstrate” (paragraph 8). Utilizing mobile devices to create edited books using applications such as Book
Creator or Pictello are great ways to showcase student’s writing in a non-traditional manner. Mobile devices can be utilized for students within a pre-existing writing program. A Rotation model can be employed, whereby students share a device with a partner, or they work on devices during specific teacher-chosen days. Mobile devices will enable students to stretch themselves, and express themselves in many new ways that are not accessible to them without technology available in classrooms.

Bratitsis et al., (2012) reported that computers attracted students’ attention and provided strong motivation for lengthened engagement in the story writing process. Traditional story writing can be very challenging for primary students, but mobile technology can offer an alternative to traditional paper and pencil writing. Students can illustrate, use pictures or videos to animate and enhance the stories they have written. For primary students in particular, it can be very difficult to record ideas on paper. Technology could be used to-document students’ brainstorms as audio recordings to listen back when they need new ideas— like a digital brainstorm. Young children often become frustrated with the difficulties they encounter as they attempt to record their ideas on paper (Christensen, 2017). It is important to remember that students of all abilities need access to learning tools that work for them. Mobile devices are one way for students to access writing even when they find writing challenging.

Access for Students with Special Needs— Assitive Technology

The use of mobile devices in primary classrooms directly improves student agency, engagement and motivation. Mobile devices support the accessibility of content for all learners. Levy (2014) explained that iPad's act as a translation, communication, and individualization tool with unrivaled effectiveness. In so doing, these devices reduce frustration, build confidence, and, well, just work in teaching students the skills they need to learn to thrive.
Students with disabilities will benefit from having alternate ways to learn, explore and then demonstrate their understandings. Mobile devices support students working together, and cooperatively. Students can work together as they dive into new content and apply what they’ve learned in the classroom (Burns, 2018). The goal of the educator is to always reach our students at both ends of the learning spectrum, and mobile devices and assistive technology make that possible. One of the most important things that we gain from mobile devices and technology in the classroom is that we now have the ability to ensure that all students receive the type of educational experience they need, at the time they need it (McLeod et al, 2014). Being able to personalize our student’s education and ensure that they are getting what they need, when they need it is a huge challenge for teachers who already feel they are spread too thin. Teachers cannot always be everywhere they are needed, and it is comforting to know that students can be working at their own pace despite whatever else is happening in the classroom. Mobile devices also support communication between learners, as well as with the teacher. By attending to the needs of learners with disabilities, learning provision is also improved for those who have hidden disabilities and those who learn more effectively when material is presented in alternative ways, (UNESCO, 2010). In short, educators are able to reach all of our learners by engaging mobile technologies.

Mobile devices make learning accessible to all learners and there are many practical ways in which m-Learning supports diverse learners. UNESCO (2010), mentioned tools that can be used, such as dictionaries downloaded to mobile phones or game consoles, that are helpful as reference tools for learners with dyslexia and other learning challenges. Text-to-speech conversion and voice recognition are also helpful for students who may have written output challenges. In having assistive technology available for our students who need it, we are ensuring
that students class time and learning experiences are meaningful for them. Universal design for learning is also a concept that lends itself to meaningful learning for individual students. When a teacher can plan with “the three principles of UDL: Provide multiple means of engagement, provide multiple means of representation, provide multiple means of action and expression” (CAST, 2014) pg. 59, they will be planning for the needs of all students. The guidelines would be used to evaluate and plan goals, methods, materials, and assessments for the purpose of creating a fully accessible learning environment for all. (CAST, 2011). Technology can be used to reach all of our learners, and it can also be used to engage our students who are needing an extra challenge in their learning experiences.

Technology as a Way to Extend Learning for Writers

Mobile devices and m-Learning are ways to extend student’s learning and writing. Geist (2011) noted that the iPad is a useful tool for elementary students because it “allows children to manipulate objects in a natural way with little adult intervention” (p. 765). Students who struggle with written output may succeed with little adult support when using an iPad. Students can use multiple programs in order to extend or support their writing. Apple has iMovie, which can be used to create movie trailers. Students can use this app to create a movie trailer for a book, or a story that they have written.

Research shows that online programs used at school need to be ones that can also be accessed at home. When students have access at home as well as at school, they are more likely to continue to write at home— as well as stretch themselves as they can take risks at home when they may have support from adults as well as privacy from peers. Recently, two studies that separately followed fifth and eighth graders who used tablets for learning in class, and at home, found that learning experiences— including writing— improved across the board (Lynch,
This is important to note, as students who are able to access content at school and at home saw improvements in their writing. When we can provide learners with apps and programs to use at both school and at home, they are able to independently practice needed skills without direct instruction from the teacher.

Students need visual stimulation which could be facilitated by apps, as well as other means, to creatively express themselves. Writing can be enhanced by visual depictions facilitated by easy to use apps. Book Creator, Pictello, and Explain Everything are three iPad apps that are very well rated in terms of accessibility and ease of use for primary students. These apps can be used to brainstorm, plan, write, as well as showcase written work. These apps lead to student’s increased engagement with their work, as well as giving students alternative ways to present their learning.

Assessment for and of Learning

Students have opportunities to show their learning in alternative ways when they are able to use mobile devices. Students are able to work from their own strengths, as well as having the ability to show their learning in multiple ways. Alternate assessment tools can be employed to present learning in a variety of ways. According to the BC Education Plan,

Students, teachers and families will benefit from more flexibility and choice with respect to how, when and where learning takes place. This means schools must have flexibility to design learning opportunities that really work for students and boards of education need the latitude to organize programs that extend beyond the typical school and classroom format (p.10).

This could have students using iMovie to show a video trailer that they have created for a story they wrote, they could use Pictello to voice over pictures and scenes that they have made—
telling a narrative story instead of writing it. Students will become activated learners through using iPad technology, while discovering their own skills, and feeling more successful and in control of their own learning. They may become more motivated to learn simply by choosing, and playing, their own educational games (Geist, 2011). Hung, Hsu, & Rice (2012) suggest that when using online programs, information stored in learning management server logs can provide a very rich source of data for investigating actual learner behaviors—something that is typically very difficult to do in face-to-face environments. Educators can then use this data to inform their teaching. Mobile devices provide rich assessment for and assessment of learning. These opportunities will support teachers in stretching their learners and providing rich and meaningful learning opportunities for their students. Teachers using alternative means of assessment are able to assess students from an asset-based model rather than a deficit-based model where each student has to represent their learning in the same way.

Conclusions

My research into how to use Blended Learning to support writing has resulted in some key learnings. These include the fact that the two elements of Blended Learning that are essential for any program are: student control over path and pace; as well as being in a classroom for part of their learning experience.

Students of all abilities will be supported by a blended classroom utilizing mobile devices. It is important to remember that students of all abilities need access to learning tools that work for them. Mobile devices are one way for students to access writing even when it could be a learning opportunity that they find challenging. By having assistive technology available for our students, we are ensuring that students class time and learning experiences are personalized and meaningful for them.
Educators need to try and bridge the gap between what happens at home, and the learning that happens at school. When students have technology access at home as well as at school, they are more likely to continue to write at home—as well as stretch themselves by taking risks within a secure space. By using mobile devices to present their learning, students are able to work from their own strengths, as well as having the ability to showcase their learning in multiple ways. Teachers are therefore able to assess students from an asset-based model rather than a deficit-based model where each student has to represent their learning in the same way.

The findings from this comprehensive Literature Review will be applied to my Major Project design and development as presented in Chapter 3 of this Process Paper.
Chapter 3 – Procedures and Methods

Development of Proposal Idea

School districts across BC are currently trying to implement personalization in education as outlined in our new BC curriculum. The BC curriculum states that, “schools may provide flexible timing and pacing through a range of learning environments, with learning supports and services tailored to meet student needs” (par. 12, Curriculum Overview). Blended Learning is one type of learning environment that allows teachers to create these tailored learning experiences for each student. We all acknowledge that not all students learn concepts the same way, therefore we cannot meet their needs by traditional teaching models of standing in front of the class and delivering information. The need for this differentiated instruction led to my Critical Challenge Question ‘How can a Blended Learning model be applied to facilitate personalization of numeracy instruction for primary students?’

Through the research I found that students had better engagement when using technology to learn content and practice concepts. This was important because in traditional classroom models young students often have difficulty staying on task when the teacher is working with other students. The research also demonstrated that the programs used in Blended Learning had to have an assessment component to inform instruction for the face-to-face teacher station. This had two implications in the classroom. First it would guide the teacher as to what skills needed to be targeted from the Teacher Station. Second, it allowed more teacher time for direct instruction as opposed to spending teacher instructional time on assessment.
The application of these theories led to the discussion, with my MEDL (Master of Education Leadership) colleagues, about the need for a teacher resource to assist those who wanted to use Blended Learning in their primary classroom to personalize instruction. The new BC curriculum discusses flexible learning environments, but it doesn’t explain how to set up or implement such a program. The need for a resource of this type was the catalyst behind my Major Project for my MEdL (Masters of Education Leadership) studies.

Development of Major Project

D. Farrell, G. Farrell and I work together in Campbell River, BC teaching in the primary grades. Through teaching at the same school and completing various collaborative assignments together in OLTD, we discovered that we all had similar philosophies of how young children learn. When we developed our Critical Challenge Questions, we realized that we all wanted to help personalize learning in our classroom so that all our students could reach their full potential. We each felt that the best way to move towards personalization with limited adult participation in the primary classroom was by implementing a Blended Learning model. We each decided to look at Blended Learning through a different content area. D. Farrell’s focus was on personalizing Writing, G. Farrell’s focus was on personalizing Reading and I wanted to personalize Numeracy.

After brainstorming our ideas on what the site should look like, we decided that there were areas that would overlap no matter what subject teachers wanted to begin incorporating Blended Learning. Through research, we learned that for teachers to make the paradigm shift in their teaching they needed to start small by focusing on one subject at a time. By having all three core subjects represented in a single website resource we felt that there would be choice as to
what subject a teacher wanted to start in and then be able to go back and implement the new model with another subject when ready.

The first thing we did when we got together with our Supervisor was create a timeline to keep us on track. We all wanted to begin using the resource in the new school year to coincide with the 10 iPads provided from the district to pilot a Blended Learning program in each of our classrooms. This also allowed us enough time for development, along with time to evaluate the project, collect feedback from colleagues and summarize the findings. This timeline was adjusted through the project design, development and implementation phases.

Table 3
Website Design Timeline

<table>
<thead>
<tr>
<th>Activity</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Project Build—Weebly Site Initial Meeting</td>
<td>July 2018</td>
</tr>
<tr>
<td>—decided on initial set up of site</td>
<td></td>
</tr>
<tr>
<td>Research on various apps and websites to use for Blended Learning with primary students. Compared and share resources with colleagues</td>
<td>July 2018</td>
</tr>
<tr>
<td>Feedback on site design from Supervisor (Mary O’Neill) and suggested edits applied</td>
<td>July 2018</td>
</tr>
<tr>
<td>Feedback on site design (Avi Luxenburg) via Zoom</td>
<td>August 2018</td>
</tr>
<tr>
<td>Improved site format using suggestions from Supervisors in face-to-face meeting with MEdL project colleagues.</td>
<td>August 2018</td>
</tr>
<tr>
<td>Added all details and attached all links to resources including alphabetizing all resources.</td>
<td>August 2018</td>
</tr>
<tr>
<td>Sent website link to Supervisor (Mary O’Neill) for review</td>
<td>August 2018</td>
</tr>
<tr>
<td>Met via Zoom with Supervisor (Mary O’Neill) to discuss and review suggestions</td>
<td>August 2018</td>
</tr>
<tr>
<td>Edited site for final review</td>
<td>August 2018</td>
</tr>
</tbody>
</table>
Key Deliverable: Primarily Blended Resource Website

When designing our website, we wanted to include the necessary resources needed to implement Blended Learning into a primary classroom. Our comprehensive Literature Review presented in Chapter 2 informed us that Blended Learning delivery often fails due to lack of resources, the associated cost of resources, educator’s lack of technology skills and teacher’s professional development. The main components of the website were designed to address these issues.

Classroom models—Rotation approach. We decided that teachers needed to understand what Blended Learning is and the various classroom arrangements one could implement to support the endeavor. As our research indicated, a Rotation approach is best suited for implementation in a primary classroom. We put the various classroom arrangements under a navigation tab title Classroom Models. Nested within that tab were the various content areas of Numeracy, Reading and Writing. Each of us outlined a few choices teachers could use in our specific content area. For Numeracy, I focused on the Station Rotation and Lab Rotation approaches.

Because we wanted the site to be streamlined we decided that all three content areas should be set up the same with a button link for iPad apps and another for Assessment. This made the navigation of the site easier and consistent. We spent a great deal of time researching apps to use in the content areas. To help facilitate Blended Learning in Numeracy the apps fell...
into three categories; apps that direct teacher instruction and student practice, apps that allowed students to practice skills, and apps that the teacher would use during small and whole group instruction to teach a concept.

Vetted apps and websites. As the research indicated, there needed to be Assessment for learning apps that would allow students to progress at their own pace as well as provide the students and teacher with timely assessment. The first set of apps help support numeracy instruction by providing a dashboard that allows the teacher to distribute assignments as well as collect assessment data on student progress. These apps really are the backbone of implementing a blended Numeracy program in a primary classroom as the data collected in the Technology Station informs instruction— it allows the teacher to personalize students’ programs. The research suggested that sustainability of Blended Learning often depended on cost. Therefore, it was important for me to find as many cost-free, quality apps that would be easily accessible for teachers to use.

The Literature Review also revealed that using blended delivery improved Numeracy skills due to greater student engagement and time spent practicing skills, until mastery is reached. The second set of apps I looked for were game-based allowing for student choice and to provide students opportunities to practice Math skills using game-based technology. These apps use advanced technology that adjusted the games based on student ability. These apps also allow student choice, which is an important component in Blended Learning.

The third type of apps and websites resources were ones to help support small group, or whole group teacher-led, instruction. These apps were chosen to help teach specific concepts and strategies. Some apps have virtual manipulatives that can be used to help develop and explain concepts. Other websites provide teaching resources to help develop student’s problem-solving
skills and to assist students in making real world Math connections. This applied Math is part of the new BC Mathematics curriculum where students need to apply their Mathematical knowledge to a broad range of situations encountered in everyday life. (“Mathematics - BC’s New Curriculum,” 2018). After selecting the various apps to support the learning areas I needed to find technology tools that would be used for assessment.

Assessment. The new BC curriculum focuses on students becoming lifelong learners. This means that we need to allow them to take more control of their learning by involving students in the assessment process and setting goals based on their reflections. (“Curriculum Overview | Building Student Success - BC’s New Curriculum,” 2018). To help facilitate the assessment process I decided to find tools and apps that would help students record and share their learning journey with their teacher, peers and parents. The tools needed to be multifaceted to help students to become proficient with technology for 21st Century learning. Using the iPad camera feature was one such tool along with the Draw and Tell app. Both allow students options for recording and showcasing their understanding.

Rubrics. Along with tools to capture student’s work visually and auditorily there needed to be a section presenting teacher rubrics used for formative and summative assessment. I included many of my own editable rubrics for teachers to use as starting points, as well as links to other sites teachers may want to visit to create their own customized rubrics. After we finished our own content development, the three of us pooled our thoughts and resources to design the How and Why to Blend section.

E-portfolio. It was also important to include a place to store these assessment pieces therefore a section on E-portfolio was a considered a necessity. This also aligns with our
district’s current philosophy on providing an electronic portfolio to showcase students learning throughout their schooling.

How and why to blend. The next steps of our project design involved preparing the ‘how and why’ of Blended Learning. First, we felt teachers needed to have access to the research before deciding whether Blended Learning would be a good fit for their students. The research section was jointly created from an assignment we had completed in OLTD and from the collation of our Literature Reviews. Mary O’Neill was very helpful in collating our three reviews into one succinct reference resource which was also made available on our site.

After considering the research, teachers need to understand how to set up a Blended Learning model and how to begin teaching students within the new learning model. Danica Farrell was invaluable in helping create this section as she had prior experience piloting a one-year SET BC project. Considerations prompted many discussions as to what skills students needed to be successful using technology in a Blended Learning model. We all felt that starting small was extremely important as our research findings showed that Blended Learning was more successful when implemented gradually.

FIPPA. Another important aspect to consider before beginning Blended Learning is FIPPA, the Freedom of Information & Protection of Privacy Act. This act ensures students’ information is kept safe while online. Since primary teachers are working with children under the age of 19 it is important for teachers to know when they need to have parental permission for their child to use certain programs. BC teachers have a legal obligation and need to be aware of where programs host and store certain information and what they can and cannot be putting online.
Funding your project and resources. The final two sections we included provided information on funding your project and resources. As the research suggested many Blended Learning attempts don’t succeed due to financial costs and budget restraints. To assist teachers in lessening the financial burden of implementation we felt it was important to include a list of available funding opportunities. Some of these were collected from district or provincial grants our school had received in the past.

The resource section is valuable to those who would like to follow some of the latest blogs, books, websites and videos on Blended Learning strategies to use with primary students. This section will be expanded as new resources are found—by us and guests who visit the site and offer suggestions via email. As we put the finishing touches on the website we began discussions on implementing Blended Learning in our own classrooms the following academic semester.

Major Project Implementation and Feedback

We decided it was important to complete our project development during the summer break when the three of us had more time to collaborate and focus on the project without the demands of our regular face-to-face classroom teaching assignments. We met with our supervisor Mary O’Neill and completed our final website edits during the last week of August. This left us with the beginning of September to develop a questionnaire designed to complete the beta/field testing required by the Major Project criteria guidelines.

This anonymous questionnaire was sent out to various School District #72 staff members, OLTD cohort 5 members, supervisors, and students in their final year of the B.Ed program at VIU. We wanted opinions from a wide range of teachers including various grade ranges and technology experience. We felt this was important due to the need to make this resource user-
friendly for all, regardless of technology and/or teaching experience. We requested that the
Google Form be completed and submitted by the end of September 2018. The results and
recommendations from this review and feedback process were collated and detailed in Chapter 4.
Chapter 4 – Field/Beta Testing and Findings

Field/Beta Testing and Findings

We completed version one of our project build in August 2018. Once complete, the website was publicly published in September 2018. Together we prepared clear questions, in survey format, that would provide us with feedback on the overall website design and each of the three subject areas presented. Mary O’Neill was consulted, as project Supervisor, and we finalized our survey questions to inform site revisions as v.2. Together, we established a variety of sources that we could request feedback from, and a call was made to review the v.1 site build.

Google feedback form. An email containing an invitation to review the website containing a URL and a link to the Google Form was sent to our MEdL cohort, colleagues in the teaching profession, district administrators and Vancouver Island University education faculty. The review process was conducted over nine days, after which we met to analyze the results of the twelve responses received. The Google Form was anonymous to provide respondents the opportunity to give honest feedback. Our form contained five distinct sections, with subsections added to reflect each topic area specifically. Please refer to the image in figure 1 below.
Feedback sections. The first section “User Profile—Background Information”, included questions which would reveal to us what the demographic of our reviewing audience was. These questions were used to create a whole picture of the audience and would tell us if our reviewers were currently using technology in their practice, and if they already had an understanding of what Blended Learning was.

The second section, “Website Design and Navigation” sought feedback on ease of use for navigating and maneuverability between different pages on our site.

The third section of our site build was titled “Accessibility” and focused questions on how easy and intuitive the site was to use on different devices.
The fourth section was our “Content” section, where we asked specific questions regarding blending the different content areas and if the assessment tools were clearly explained. The questions were asked in order for us to see if there were any gaps with the information that we provided, and if our content areas were fulfilling our goals of showcasing the importance of personalization in education.

The last section titled “Final Thoughts”, was a request for the reviewers to provide any additional information they felt was lacking and wasn’t addressed by our previous questions.

Feedback Questions

For review of our Major Project and key deliverables, we constructed an anonymous questionnaire to help guide and inform us about the user’s background, website design and navigation, content, clarity and usefulness of the site. An example of our Google form questions can be viewed in figure 2 below as well as, a list of all questions that were presented through the Google Form.
Figure 2. Screen shot of the image with some Google Form questions presented on our survey.

Section 1 – User Profile Background Information

1. What grade are you currently teaching? (Or what grade have your most frequently taught?)

2. Do you currently use technology in your classroom?

3. What would you need to implement a Blended Learning model into your current teaching assignment? (Check all that apply to you)
4. If you checked the other box above, please indicate below what you would need to implement a Blended Learning model into your practice.

5. After reviewing the website, would you now consider implementing Blended Learning into your current teaching assignment? Why or why not?

Section 2 – Website Design and Navigation
1. Does the welcome page clearly introduce the purpose of the website?

2. In not, how could the welcome page be altered to better explain the purpose of the website?

3. Was the website easy to navigate through the pages and the various content areas?

4. Is there anything you would change to make the navigation more intuitive?

Section 3 – Accessibility
1. What device did you view the website from?

2. Please comment on any access difficulties you may have experienced viewing the website?

Section 4 – Content (Numeracy, Reading and Writing)
1. The section 'Numeracy Apps' has been designed to provide teachers with resources to support numeracy instruction. Was this section successful in showing how the various apps could support numeracy instruction in a Blended Learning environment? Why/why not?

2. In the section 'Math Assessment' were the various tools used to support student assessment clearly explained? Is there something that could be altered or augmented to improve understanding?
3. In what ways could the information on Numeracy apps, assessment and delivery be better arranged, augmented or added to in order to aid in a user developing an understanding of how to implement Blended Learning in Math?

4. The section 'Reading Apps' has been designed to provide teachers with resources to support Reading instruction. Was this section successful in showing how the various apps could support Reading instruction in a Blended Learning environment? Why/why not?

5. In the section 'Reading Assessment' were the various tools used to support student assessment clearly explained? Is there something that could be altered or augmented to improve understanding?

6. In what ways could the information on Reading apps, assessment and delivery be better arranged, augmented or added to in order to aid in a user developing an understanding of how to implement Blended Learning in Reading?

7. The section 'Writing Apps' has been designed to provide teachers with resources to support Writing instruction. Was this section successful in showing how the various apps could support Writing instruction in a Blended Learning environment? Why/why not?

8. In the section 'Writing Assessment' were the various tools used to support student assessment clearly explained? Is there something that could be altered or augmented to improve understanding?

9. In what ways could the information on Writing apps, assessment and delivery be better arranged, augmented or added to in order to aid in a user developing an understanding of how to implement Blended Learning in Writing?

Section 5 - Final Thoughts
1. In what ways could the information on Writing apps, assessment and delivery be better arranged, augmented or added to in order to aid in a user developing an understanding of how to implement Blended Learning in Writing?

2. Please add any final thoughts or suggestions that would help improve the development of our website.

Field/ Beta Testing: Feedback and Findings

The call for feedback received 12 responses in total. These responses reflected opinions and perceptions from colleagues teaching Kindergarten through post-secondary. Overwhelmingly, the responses were positive towards our Primary BlendED website resource. We received various suggestions which supported us in version 2 of our project build. All feedback was evaluated, and suggestions were implemented where deemed appropriate.

User Profile background information. The majority of the feedback evaluators were k-3 teachers, with the second greatest number being grades 6-8 educators. The largest group of evaluators are currently using technology in their classroom. Some of the main identified needs to implement Blended Learning were; classroom devices and infrastructure as well as maintenance and replacement of devices when required. On reviewing the website, it was evident that many respondents would consider implementing a Blended Learning model in their practice, with a few respondents showing some concern over the possibility of too much screen time for their students as they use devices at home and at school. This concern was also met with some hopefulness, as it was recognized that technology can enhance concepts currently being taught, while promoting the development of digital learners and 21st Century skills. Respondents appreciated that Blended Learning allows for greater personalization and inclusivity to meet the unique needs of individual learners.
Website design and navigation. The website was built using weebly.com, which has limitations. One of the suggested changes was to take away the drop-down menu, but Weebly provides no adequate alternatives to this type of navigation. Other respondents mentioned that the site was well laid out, and that it was very intuitive. Although the majority of respondents felt that the website Welcome page clearly introduced the purpose of the website, they also felt that there was a need to have a clear definition of what Blended Learning is, on the Welcome page. The navigation seemed clear and intuitive to the participants who were evaluating our site build.

Accessibility. All of the reviewers used a laptop or a desktop computer to review our site. Unfortunately, no other devices such as a Smartphone or tablet were used in the review process. There were no reports of difficulties accessing the site from the devices used. Most of the reviewers said the site was very intuitive. The only suggestion for change was the font size and colour of the menu.

Content — Numeracy. The content area of Numeracy was created in order to help teachers personalize their Numeracy program using a Blended Learning model. The technology chosen also provided the teacher and students with ongoing feedback to help guide small group focused instruction. In all, the feedback was very positive. Evaluators were happy that there was a variety of apps listed that included the costs, pros and cons of each app, as well as a more detailed overview of each app, providing further information. There was a suggestion that there be a link from the Numeracy Apps/Assessment sections back to the Blended Learning Model section for ease of demonstrating it in practice. Another suggestion regarded the organization of the various assessment rubrics and advised making it more attractive or cleaner looking.

Content — Reading. The content area of Reading was created in order to assist educators in personalizing their Reading program by implementing the use of technology in a
Station Rotation Blended Learning model. The feedback received on the Reading section was overall very positive. One suggestion was to change the background to more vibrant colours, to create more distinct differences to each of the sections. Another suggestion was to include a brief overview in the Assessment section for the various tools.

Content — Writing. The content area of Writing was created in order to facilitate teachers using technology in order to support student Writing, and students creating Writing products. The feedback on the Writing section was that it was, overall, clearly introduced and detailed. It was mentioned that the evaluators appreciated that there were links to other websites where teachers could find even more information. There was a suggestion about adding in the BC Performance Standard quick scales to the assessment section of the Writing pages. It was suggested to link Danica’s Pictello Project on this part of the site, to be used as a testimony to its benefits in practice.

Final thoughts. The reviewers indicated appreciation for the diversity of apps and technologies listed in all areas of the website. Overall, they found the site very user friendly and extremely comprehensive without being overwhelming. There was an indication that consistency of photo size, fonts and colour needed to be addressed. It was also suggested that a video explaining what Blended Learning is, and evaluation of apps for androids would enhance the practicality of the website. In conclusion, the reviewers provided a lot of positive, and some constructive, anecdotal feedback. They felt the variety of apps and tools suggested, and the website overall, was a much-needed resource lacking in the area of primary education. With the new BC curriculum’s emphasis on personalized instruction, the utilization of technology with a Blended Learning model is timely. There were suggestions to link the content areas back to the
delivery models for ease of referencing for the user. Below is a summary of the key findings collated from the responses gathered on the Google form survey.

![Summary of Findings](image)

Figure 3. Screenshot of the summary of key findings chart from the Google Form survey.

Summary and Thoughts on Feedback Process

Overall, the feedback received from the field/beta testing was positive and constructive. It was clear that the majority of respondents implement, or would like to implement, technology and employ a Blended Learning model in their practice. The website and the resources and tools within it were well received.

The responses to our Google Form provided useful feedback and led to our concluding that the Primary BlendED website and resource toolkit were well-received, and the overall project achieved our initial goals in addressing our Critical Challenge Questions. Taking into consideration the constructive suggestions collated from the field/beta testing has allowed us to move forward and make positive changes to our website as v.2 revisions. These changes and concluding remarks will be addressed in Chapter Five of this Process Paper.
Chapter 5 – Conclusions and Recommendations

Project Overview

The need and desire to create personalized learning experiences for my students prompted this Process Paper and project build. The B.C. education system recognizes the need for individual and personalized learning. The challenge is how to accomplish this in primary classrooms of upwards of 24 students to one teacher. At the same time, everywhere we go we are surrounded by technology. We are a society that has information literally at our fingertips 24/7. When we combine personalized learning and technology, it is simple to see how educators could potentially accomplish richer learning and create individualized educational programs for all students.

The intent of this Major Project was to create, along with my two colleagues Danica Farrell and Gina Farrell, a resource specifically aimed at primary teachers. It was our intention to support primary teachers in creating rich classrooms with individualized and personalized learning for their students through a Blended Learning model. To accomplish this, the three of us set out to build a website to house the needed information and resources for primary teachers to access and use in their transition to a Blended Learning classroom.

The website build was designed to define Blended Learning and guide the user through three primary subject areas- Numeracy, Reading and Writing. Each subject area gave the user the needed information and structure to begin implementing a form of Blended Learning in their practice.

Conclusions as Applied to the Project Re-Design

The Major Project build was published online, https://primaryblended.weebly.com/, in October 2018 and a call was made for colleagues to review the site. Twelve participants
completed the anonymous Google Form survey, the results of which informed the redesign of the website. Overall, the website was well received, and all reviewers concluded that it was a great resource to enhance foundational skills through technology, as it provides primary teachers with tools and techniques to help meet the unique needs of individual learners.

General anecdotal comments about the layout and content of the website were overall very positive. When asked if there was anything that could be changed to make the navigation of the website more intuitive, the majority commented that there were no changes needed. Some participants suggested having less drop-down menus and less white space at the top of the website and larger font size. Unfortunately, these are all limitations of the Weebly site builder and cannot be altered.

In general, the comments were all positive on how the resource was developed and presented. All felt the site was clear and easy to navigate. Some of the suggested changes that we made to the site after reviewing the data are as follows;

- Added a definition on home page for “Blended Learning” and included a video.
- Change the “Blending Your Classroom” heading to “Curricular Content”
- Add a button for “Models of Delivery” to the header section of each subject area app page.
- Add a button for “Models of Delivery” to the end of each subject assessment area app page.
- Add heading explanations for the Reading and Numeracy assessment pages.
- Refer to the Reading Apps page for literacy skills, linked from the Writing page.
- Change the colour backgrounds and fonts on all of the app pages so that sections are distinct.
• Indicate whether each app is Android compatible or not.
• Make sure that photos are flush left under each app.
• Add Performance Standards under assessment for each curricular content area.

We made these changes because we felt that they were in line with our vision for our Primary BlendED website. These changes felt natural and augmented the flow for visitors to our site.

Outcome Evaluation

Our project endeavored to provide a resource for primary teachers in order for them to implement a Blended Learning program which will facilitate personalized learning for their students. We feel that our project build answered our original inquiry questions. Our Major Project researched the best ways in which to implement technology into a face-to-face primary classroom. We endeavored to seek contextual research and practical applications of technology and have worked towards compiling this information and sharing it with other teachers so that they have a place to start their own technology journey. In particular, ‘How can a Blended Learning model be applied to facilitate personalization of numeracy instruction for primary students?’

Results of Findings in Relation to the Literature Review

The Literature Review surveyed articles and theories relating to Blended Learning and how it can be used to engage students and personalize instruction in the primary classroom, to meet the new BC curriculum that ensures all students achieve their full potential while meeting their diverse needs as learners. (“Curriculum Overview | Building Student Success - BC’s New Curriculum,” 2018). The review was done with specific consideration on which model to use in primary education as well as what mobile devices and apps might help to facilitate the study of
Mathematics for primary students. The website, along with the deliverables were created based on the findings of the Literature Review.

Model considerations. Oliver & Stallings (2014) reported that teachers needed to consider Blended Learning in order to better support the different types of learners. Using a Station Rotation approach allows the teacher to work with smaller groups, while others work independently on their assignments at the various stations with technology being one of the stations. According to McLeod (2012) students need to be in the zone of proximal development in order for optimal learning to occur. Mirriahi, Alonzo, & Fox (2015) also indicated that one of the challenges implementing a Station Rotation model would be the lack of digital fluency on both the teacher and the students.

Model considerations were addressed in the website build, both in the models of delivery section and on the landing page. In these sections, the models were explained, and each rotation option was outlined to guide teachers who want to begin blending their classrooms. On the landing page, we inserted a video of a station rotation model being used in a classroom. Models of delivery back buttons were also inserted into the app pages, so teachers would be able to reference these models when reviewing the apps. The lack of digital fluency is also addressed in our section titled ‘First Steps’ which provides teachers with the beginning strategies on using devices in their classrooms.

Device and app considerations. Using mobile devices in primary classrooms greatly improves student agency, engagement and motivation. According to Crichton, Pegler, & White (2012) iPads have a short learning curve, longer battery life and are intuitive due to their use of icons for the primary learner. Within the website, we didn’t specify that teachers needed to use iPads in order to implement Blended Learning, but it was implied that iPads would be the most
user friendly. Our reviewers informed us that some schools used android tablets and wanted to know if the apps were android compatible. This suggestion was added to our version 2 of our project build.

When choosing apps Haelle (2017) suggests filtering apps using the following five key questions. Does it promote active mental engagement (thinking, predicting, questioning, drawing connections, and reflecting)? Will it help focus students learning without having distractions built into the app? Does it scaffold learning? Is it interactive and provide either feedback through the teacher or app? Does it clearly define objectives that can be tracked and assessed by the student or teacher? Given these five key questions educators can make knowledgeable choices when selecting appropriate apps for primary Mathematics instruction. Zaldiver-Colada (2017) also suggest that teachers should choose apps that have an audio option as many primary students may not read well as well as helping them focus.

These five questions and audio features were used as an overarching framework when choosing apps to use in our project build. Another consideration that was important to us was to include as many free or low-cost quality apps that would provide students with optimal learning, as many Blended Learning projects don’t continue due to financial restraints. Choosing affordable apps allows more teachers to use Blended Learning as a feasible solution to personalize numeracy instruction for all learners. We divided the apps into three categories; apps to support numeracy instruction, apps to support student practice and apps to support whole group instruction. The first set of apps allows teachers to develop personalized programs for each student. These apps allow the teacher to hand out specific activities to individual students. They provide the teacher with ongoing assessment that helps to direct their small group instruction during the teacher station. The second set of apps allows for students to practice mathematical
skills using game-based learning in their associative level which allows students to master a skill before moving on. The third set of apps allows teachers to use digital learning tools to help teach concepts to both whole class instruction as well as small group instruction. Included in this section are digital manipulatives that are used in problem solving. These apps help students develop their digital fluency with the teacher as a guide.

Limitations of the Project

Some of our limitations were around our choice of building our Major Project using Weebly. Weebly itself limits the user to specific parameters of font choice, page colour, and white space. We did not know these limitations until we neared the end of our build and attempted to make some changes based on feedback from our project evaluation survey and which we were unable to accomplish. Another limitation for our project build was time. This project build was a large undertaking and we were limited in the resources that we were able to share as we had limited amounts of time in which to review the apps that we suggested to our viewers. We were limited in attempting to ensure that the options for apps were cost friendly so that other teachers would find their programs sustainable over long periods of time. We were unable to create a singular spreadsheet for each content areas apps of choice, due to time constraints. Weebly had limitations on web design, as we found it challenging to upload pictures and have them be sized appropriately.

One of the most challenging limitations that we encountered was trying to implement three separate visions into one site. When you have three unique perspectives, there are times when you compromise, accept and change things that you may not have altered independently. This limitation turned into a great opportunity for growth for each of us and affected our site in such a way that created an enriched product.
Major Project Recommendations

Using a Station Rotation model in primary classrooms is the most effective way to teach with technology. Teaching the expected behaviours and needed skills to a small group at a time is necessary for students to understand how to use the different apps accurately. Using a Station Rotation model allows the teacher to differentiate and personalize the learning that is taking place while the student is using technology. When creating classes on different apps, the teacher should pre-group students in ability groups so that they are able to release different content as the different groups are ready, as this is only available in paid subscriptions if you don’t create separate classes for each ability group. The device that is most practical for primary classrooms is the iPad. It is the most diverse device, and it supports many apps. Blended Learning in the primary classroom allows teachers to reach learners who have many diverse learning styles.

Blended Learning is such a new method of teaching. Other educators can use our research and have a point at which to start their own discovery of Blended Learning. There is a lot of room for growth with research into Blended Learning, and eventually there will be longitudinal studies around the effectiveness of Blended Learning in primary classrooms.

Major Project Deliverables

Through this process of creating our Major Project, we have grown as learners and have grown our skills in web development. Our product, our Major Product build, has been a challenge to create, but in the end we feel that it adequately addresses the need that was identified when we set out to create this resource for primary teachers. The resource includes diverse tools and models with which a teacher could adapt their face to face classroom quite easily. We have built a resource that encompasses the start of the process as well as the end, in assessment. There are tools that teachers can use individually, or that they can use as a collective.
Next Steps

Some of our next steps for our website build include continuing to source apps that may be useful for each of the content areas. These apps can be both paid, and free apps. We could group our apps by price once they become a robust list of apps. We will continue to work on screencasts for how to set up classes within specific free apps as well as create screencasts for the assessment apps- in an effort to show our readers some examples of how to implement assessment within a Blended Learning model. We want to create a spreadsheet which includes all of our apps of choice, and gives the reader specific information about each app at a glance, for example price etc. We want to compile more resources based on what teachers have submitted to the site around what they are doing in their classroom.

Final Conclusions

Education continues to evolve to reflect the shifting needs in our society. As society uses technology daily in their lives outside of school, we must now incorporate it into the educational setting, so our students will attain the 21st Century skills needed to be successful and competitive as they move through the education system. The new B.C. Curriculum is moving away from the traditional models of teaching to more personalized education model where students are working on assignments and projects relevant to them at their own pace. The deliverables that I created for my Major Project highlighted just that fact: Blended Learning can be used to personalize instruction in the primary classroom.

The Primary BlendED website was designed to serve as a resource for educators wanting to implement Blended Learning into their primary classrooms. Although it was a challenge, having three visions for our project, it ultimately made our site stronger and more robust. We were able to delve deeper into content, and have three people converse and make decisions,
which led to much growth for us personally and professionally. We have ended up with a site that honors each of us individually and collectively. Results from the Major Project field testing confirmed that the resources provided in the website are successful in positively answering my Critical Challenge Question, ‘How can a Blended Learning model be applied to facilitate personalization of numeracy instruction for primary students?’ as it demonstrates how to implement a Blended Learning model into a face to face primary classroom in order to personalize Numeracy instruction for students.
References

Primary Blended ED — Numeracy

https://doi.org/10.3402/rlt.v23.28451

References

Primary BlendED — Reading

https://doi.org/10.1080/07380569.2015.1100652

References

Primary BlendED — Writing

Bratitsis, T., Kotopoulos, T., & Mandila, K. (2012). Kindergarten children’s motivation and
collaboration being triggered via computers while creating digital stories: A case study.

Universal Design for Learning Guidelines version 2.0.

Christensen, R. A. (2017). The Effects of Using Computer and iPad Story-Writing Applications for Creative Writing with Kinder Year Students in a Montessori Early Childhood Program.

UNESCO Institute for Information Technologies in Education. (2010). UNESCO IITE Policy
Brief: Mobile Learning for Quality Education and Social Inclusion. *Unesco*, (December), 1–12. https://doi.org/10.1017/S026646231000019X

Appendix A

Major Project Website: Primary BlendED. (https://primaryblended.weebly.com/)

Screen shot of the Homepage for the website created for the Major Project.